
0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E MARCH/APRIL 2017 | IEEE SOFTWARE 97

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmermann
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

INSIGHTS

IN PART 1, we discussed microservices
defi nitions, clarifi ed their relation to
service-oriented architecture (SOA), and
covered service identifi cation from busi-
ness requirements.1 It also became clear
that once a monolith gets broken up into
microservices, architects and developers
must deal with many design issues com-
mon in distributed systems, as well as
related organizational matters. This in-
stalment of Insights takes it from there.

Service Composition
and Communication
Cesare Pautasso: Having decomposed a
monolith into a set of microservices,
how do you compose them back together
into user applications?

Nicolai Josuttis: First, we have to clarify
how coarse-grained microservices are
allowed to be. In my world, you can
certainly provide services that cover
composed or even complex stateful pro-
cesses. For example, consider the service
of a bank transfer, calling a withdrawal
and a deposit (and sometimes a cancel-
ing) service. I’d assume that such a trans-
fer service is still a useful granularity for
a service and probably even a microser-
vice, although it is composed.

Appropriate granularity is some-
thing that evolves according to require-
ments and experience and should not be

dictated by the architectural style. In a
large and complex SOA at a major tele-
communications company, we had about
30 different services to request customer
master data. They evolved and improved
over time, and some of them were just
compositions of services we already had.
One important reason to implement
them redundantly was performance.

Mike Amundsen: Therefore, it doesn’t help
(from the caller’s point of view) to dis-
tinguish between pure microservices (no
dependents, no side effects) and com-
posed microservices since this is almost
impossible to see at runtime in a widely
distributed system. My experience tells
me you will always have composition or
aggregation in a healthy, resilient system.
Just where it appears and whether or not
other components even know which ser-
vice is pure and which is composed is a
matter of style. On the WWW, nobody
can tell if the element on the other end
is pure (for example, static content) or
composed (for example, aggregated con-
tent, dependent on remote components,
or data stores).

However, a key implementation te-
net is to always give the appearance of
pure services. In RESTful HTTP [REST
stands for Representational State Trans-
fer], one way of doing this is caching.
In the reactive style, this is achieved

Microservices in
Practice, Part 2
Service Integration and Sustainability

Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James Lewis, and Nicolai Josuttis

INSIGHTS

98 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

by insisting on asynchronous mes-
sages between components—they
always return immediately, even if
the return is “I’ll send you the results
when they are ready.”

So, I see the process of composing
(and decomposing) services as one
that refl ects the growth and change
of the problem space. I always as-
sume the system I am working on is
one that will inevitably change over
time. The contributions I make to
the system (the new components,
data storage, interfaces, and so on)
are—at some level—transient. That
means I design them to be change-
able and/or disposable. Today’s
monolithic user management service
might be decomposed into smaller

services in a few years. And those
elements might be subsequently re-
composed into a new, as yet un-
known, monolithic component at
some future date.

By taking the approach of assum-
ing my work is not written in stone,
I fi nd composing services to be quite
enjoyable, too. I might not get it
right the fi rst time, and that’s fi ne.
I’ll be able to make changes to the
boundaries tomorrow or next week,
and so on.

James Lewis: Specifi cally addressing
the question of how to compose ser-
vices to deliver a web application, I
have had a lot of success using the
simple rule of “one single synchro-

nous request per page” and then
including additional page compo-
nents asynchronously. It’s discussed
neatly in The Art of Scalability.2

An example would be the Guardian
newspaper, where article content is
delivered in one round trip but addi-
tional components such as the com-
ments are included asynchronously.
This can be done using Edge Side
Includes [ESI],3 or you can replace
simple placeholders client-side by
slapping in the results of another re-
quest. Specifi cally, you just have a
little bit of JavaScript that replaces
elements in a DOM [document ob-
ject model] with the results of a call
to another resource. At Thought-
Works, we’ve done this a fair few

times for clients in the UK, and it
works pretty well. It also gives you
“seams” for replacing components
delivering those asynchronous com-
ponents at a later time.

Another approach that has gained
traction is the Backend for Frontend
pattern described in detail by Sam
Newman.4 Quite simply, you add an
API specifi c to some slice of chan-
nels, whether that’s having two APIs,
one for mobile and one for desktop
over your services, or even more fi ne-
grained as Sam describes, one for
iOS and one for Android. The benefi t
here is that you aren’t constrained
by change rates in APIs outside your
team and can concentrate on deliver-
ing exactly what you need.

Finally, GraphQL from Facebook
and the latest API platform thinking
from Netfl ix are other approaches.
GraphQL provides for a single end-
point that different channels query
and whose implementation is re-
sponsible for parsing the query and
aggregating data across multiple ser-
vices. Netfl ix has gone toward an
implementation based on RxJava,
where aggregation is achieved via a
scatter–gather approach across mul-
tiple services. It’s interesting to note
that organizations that are operating
at the extremes of scale seem to be
moving toward reactive models.

Olaf Zimmerman: Ok, let’s assume
these composition strategies have
succeeded. How do you recommend
addressing end-to-end data integrity
across service interface boundaries?

James: The simplest thing to say is
that you follow the same practices
that we’ve always followed. Data
should have a single master, a single
source of truth for that data.

Mike: Well, many times the systems
I work on do not own the data they
use. The data is from a third party or
a remote team or some other source
that we don’t control. It is certainly
possible for any upstream data pro-
cessor to concoct well-formed but in-
valid data. Hence, my approach is to
make sure each component validates
the data it receives and returns on
the basis of that component’s own
local models. This, too, matches Eric
Evans’ DDD [domain-driven design]
approach5 that we talked about in
Part 1. I don’t rely on shared or ca-
nonical data models in a system—
they never work as expected.

Nicolai: Indeed. If somebody asks
for a strict system-level solution for

Choreographed microservices
implement messaging, local state
retention, and late binding of
replaceable components.

INSIGHTS

 MARCH/APRIL 2017 | IEEE SOFTWARE 99

end-to-end data integrity, then I get
a bit nervous. Eventual consistency6
is a key approach in large distributed
systems, which means that this ques-
tion primarily has to be answered by
the business logic, not technically by
a protocol or an engine.

James: I agree with Nicolai here. It’s
simply not possible to guarantee con-
sistency across a distributed system
without sacrificing availability. This
goes back to the fundamental ques-
tion of centralized orchestration ver-
sus decentralized choreography: If I
can, I will decompose a business pro-
cess such that each participant in the
process is decoupled from the other
participants. It’s surprising how of-
ten you can flip the semantics from
one of classic orchestration to cho-
reography. In some senses, this goes
back to the origins of object-oriented
programming (OOP). I love the fol-
lowing quote from Alan Kay: “OOP
to me means only messaging, local
retention and protection and hiding
of state-process, and extreme late-
binding of all things.”7 You wouldn’t
be far wrong if you thought of choreo-
graphed microservices as implement-
ing these original properties.

Cesare: Since you mention messaging
and late binding: “To ESB or not to
ESB” is a concern that predates mi-
croservices; is it still relevant?

Mike: I have been able to create re-
silient systems that contain many
microservice components and em-
ploy an enterprise service bus (ESB)
as a central hub. Labeling these as
“not a microservice implementation”
doesn’t improve anything.

Nicolai: Exactly. Labeling or relabel-
ing never improves anything. That
said, I wonder where the microser-

vices paradigm ends. Since the early
2000s, I have categorized ESBs in
three approaches:8

• distributed (as on the Internet,
no intelligence in the infrastruc-
ture or network);

• with technical intelligence (pro-
tocol mapping, routing, logging,
security) in the ESB, but concep-
tually still transparent; and

• with business intelligence in the
ESB (mapping request and re-
sponse data, composing services
into integration flows, and so on).

My understanding is, the microser-
vices community recommends the
first and maybe the second, but never
the third approach. Which is good.

James: At ThoughtWorks we’ve been,
I think, pretty famously anti-ESB. In
part it’s a visceral response to the
misuse we’ve seen over the years and
the observation that SOA became
almost synonymous with ESB. The
main objection I’ve always had is
neatly described in Martin Fowler
and Jim Webber’s keynote at QCon
London, “Does My Bus Look Big
in This?”9 They rightly point out, I
think, that many organizations were
basically sold an illusion: “This will
solve all your problems.” Of course,
ESBs won’t and can’t; even if you get
them working (and that’s a big if),
all you’ve done is sweep things under
the carpet.

That isn’t to say that you don’t
need to be able to address the tech-
nical concerns listed by Nicolai, but
these should be explicitly called out
as requirements and implemented us-
ing the best tools you have available
rather than defaulting to “Oh, the
ESB will take care of that.” I think
API gateways run into the same risk
at the moment.10 Obviously, you

need to have a solution for authen-
tication, rate limiting, and other ba-
sic technical concerns, but as soon as
business logic ends up in them, you
will get into trouble.

Finally on this point, I think
there’s another pernicious issue,
too—that of coordination of work.
When you have these specialized
bits of kit with experts that are in
charge of them, they very often be-
come competency bottlenecks with
large queues of changes piling up
in front of them and blocking other
teams that require those changes to
get work done.

Nicolai: Yes, vendors want to sell ESBs
as tools, but just having one doesn’t
bring you SOA. So my view is that
an ESB is more a concept (with dif-
ferent ways to implement it), and any
service infrastructure always has
an ESB. Even without an ESB, pro-
viders and consumers have to agree
on a common protocol. And “no
ESB tool” or “We only use REST-
ful HTTP to integrate our microser-
vices” does not imply that things are
easy or just plug-and-play.

Olaf: Moving from concepts ver-
sus products to technology, is there
room for protocols other than HTTP
in the microservices design space?

Nicolai: Sure, HTTP is the basic pro-
tocol in this distributed world. Even
SOAP usually uses it. But we once
implemented a service call over FTP.
Why not, if it is appropriate?

Mike: There is definitely room for
more than one application-level pro-
tocol in this world! HTTP is now
getting close to 25 years old. I have
a hard time believing it will be the
only protocol we ever need for de-
cades to come. CoAP [Constrained

INSIGHTS

100 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Application Protocol],11 MQTT [mqtt
.org], and others are emerging as vi-
able for a world where messages are
smaller, memory and power are lim-
ited, and Internet connection is spotty.

And who knows what kinds of
challenges we’ll meet as we start to
implement networked software for
the interplanetary level. There are
already initiatives in this area such
as the Licklider Transmission Pro-
tocol12 and a whole host of delay-

tolerant communication implemen-
tations. Think what it will be like to
send packets of data back and forth
when it takes hours, even days for a
signal to reach the intended target. I
suspect we’ll see a shift back to large
coarse-grained, stateless messages
that can be safely replayed over long
distances.

James: Awesome stuff to think
about, Mike. I think it’s in Accele-
rando13 that Charles Stross postu-
lated a solution to the Fermi para-
dox, that as a species evolves it
becomes more and more dependent
on low-latency, high-bandwidth
communication. So, past a certain
point, you end up staying at home
since latency measured in light years
is not appropriate for messaging!

Answering the question, I’ve used
one-way, broadcast, and request–
response all at different times and,
as Nicolai intimates, on top of either
HTTP or a lightweight messaging in-

frastructure. I already pointed out in
Part 1 that to me, microservices aren’t
an excuse not to think about choices
such as a transport protocol or a mes-
sage exchange pattern (MEP) or even
a DAP [domain application protocol].
Such decisions should be made by the
teams implementing a particular sys-
tem. A core part of using an evolution-
ary approach to building out systems
is for the people building the system
to agree on the things that are hard to

change later. Which DAP or MEP to
use would usually constitute one of the
things that would be hard to change
and therefore should be discussed and
agreed early on by the team.

Sustainable Service Evolution
Cesare: How do you evolve micro-
services?

Olaf: In particular, how do you go
about versioning?

James: When I think about version-
ing, I tend to think of two differ-
ent things. The fi rst is the build
number— what did your build server
stamp your artifact with? Then there
is your interface version, which is
a separate concern and which var-
ies differently from the build num-
ber since that’s a simple increment.
Three things I would immediately
think about in this space are ap-
plying semantic versioning to your
interface, applying the Tolerant

Reader14 pattern when consuming
APIs outside your control, and im-
plementing Consumer-Driven Con-
tracts15 where appropriate.

Mike: As for versioning and evolution,
my design approach is to build ser-
vice components that can be safely
evolved by humans (developers) us-
ing backward compatibility as the
guiding principle. Changes to a ser-
vice component should never break
consumers— that means no changes
to the existing interface promises,
just additions. That makes it pos-
sible to rely on interface consumers
that can automatically adapt without
the need for human intervention. As
long as the ubiquitous language stays
the same, even new features can just
appear for interface consumers and
work fi ne. However, if the language
changes (for example, new domain
concepts are introduced), then the
system needs to be designed to al-
low clients to ignore these new do-
main elements and continue to work
successfully.

Nicolai: Yes, we have to understand
the nature of interface versioning
and what this means for any distrib-
uted system using typed interfaces
over time. Even microservices can’t
solve the inherent problems of the
requirement to be backward com-
patible for existing clients while ap-
plying modifi cations due to new re-
quirements. Although Roy Fielding
claims “Don’t version” (which, by
the way, was only meant as a recom-
mendation to avoid version numbers
in public APIs), versioning is a real
problem, which lies in the nature of
distributed interfaces. For enterprise
scenarios, I strongly recommend the
opposite: Always put explicit version
numbers into service names and data
types instead of hiding versions in a

Apply the same ideas about scaling,
statelessness, and interoperability to
people as to code.

INSIGHTS

 MARCH/APRIL 2017 | IEEE SOFTWARE 101

new hostname or namespace. This is
important for better maintainabil-
ity. Sooner or later, microservices
systems or system landscapes will
also have to deal with this prob-
lem. Unfortunately, the current hype
may lead to the impression that this
is not the case. You will learn it the
hard way!

Olaf: So semantic interface version-
ing still is required, and the syntactic
means vary by application context.
Let’s look at the bigger picture now.
What are your thoughts about mi-
croservice lifecycle management?

Nicolai: I see two options and criteria
here. Is the system landscape rather
chaotic and self-adjusting (like the
Internet), or do we need to under-
stand the relationships between spe-
cific business processes, domains, and
services (which usually helps to main-
tain the system and avoid undesired
redundancies)? In the former case, we
need the strategies that work for the
web. In the latter case, we need the
same approaches as with any man-
aged SOA—see, for example, SOA in
Practice: The Art of Distributed Sys-
tem Design.8 I see nothing new with
microservices here (except that the
current hype leads to the impression
that these problems are gone).

Mike: Lifecycle management, in my
experience, must provide the ability
to remove obsolete components from
the system without breaking the sys-
tem. This is an area that, I think,
doesn’t get much discussion in the
microservices world, and I’d like to
see more of that. For example, I’m
working on some experiments that
would allow components that are no
longer in use to simply remove them-
selves from the system. Effectively,
dying out through disuse.

James: This is where one of the big-
gest shifts in thinking has occurred.
One of the principles that have been
rethought in the last decade is the
idea of designing software so that
it can be reused. Many of the prob-
lems I’ve seen on projects at all sorts
of scale have been caused by devel-
opers or architects thinking about
reuse rather than use, and I think
microservices are a reaction to this
in part. My feeling is that we should
switch to considering replacement
rather than reuse.

So, my rather glib answer to the
lifecycle management question is
that these things should be small
enough to be thrown away rather
than maintained. This reminds me
of Theseus’s paradox (“Is it still the
same ship?”)—we should be able
to build systems whose component
parts are replaceable over time with-
out having to resort to full-on re-
writes of very large systems. This is
exactly what companies taking full
advantage of this style exploit. What
does lifecycle management mean
when you completely rewrite com-
ponents of your system every couple
of months because you have learned
something new?

Olaf: So, depending on the type of
system landscape, the service life-
cycles become shorter, and the same
functionality might get resurrected
in another service. In the light of
these increased service dynamics,
which organizational scaling strate-
gies do you recommend on the basis
of your experience?

Mike: First, it is important to ac-
knowledge that the organization
(people and processes) are part of
any system you design. So, you need
to apply the same ideas about scal-
ing, statelessness, interoperability,

and so forth to the people in your
system as you do the code. To that
end, sources like Mel Conway’s
“How Do Committees Invent?,”16
Fred Brooks’s The Mythical Man-
Month,17 and John Gall’s System-
antics18 have all influenced the way
I think about and design organi-
zational elements. I encourage ev-
eryone working in this field to keep
these sources as handy references.

James: Love those references, Mike.
To them I would add John Rob-
erts’s The Modern Firm,19 Donald
Reinertsen’s Principles of Product
Development Flow,20 and Thomas
Allen’s Managing the Flow of
Technology.21

Mike: Team size also matters. Robin
Dunbar has a social theory about
how group size affects overall ef-
ficiency.22 He relates various group
sizes (5, 15, 35, 50, and 150) to
specific challenges to maintaining
group cohesion and effectiveness.
A popular version of this approach
is Jeff Bezos’s “Two-Pizza Team”
meme.

James: It all points to the same ideas,
really. Create small, autonomous
teams, give them the tools to do their
job (and I include training here),
create a shared goal, and get out of
their way.

Nicolai: Or as Kent Beck says, “Start
stupid and evolve.” SOA in general,
even with the constraints of mi-
croservices, is an architectural par-
adigm, not a cookbook. You have
a lot of things to decide: which ba-
sic protocol and MEPs to use, how
much loose coupling, common poli-
cies, and so on. And then, to come
back to your question, two key ques-
tions arise: How do you establish

INSIGHTS

102 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

collaboration, and who is respon-
sible for cross-domain services? At
least in a managed system landscape
such as an enterprise, this often leads
to new departments for solution
managers, solution testers, and sys-
tems that provide and manage busi-
ness processes.

James: I would try to avoid the cre-
ation of departments that cross
boundaries like this. In fact, if I’ve
got one rule of thumb, it’s to orga-
nize your teams such that they can
deliver end-to-end functionality to
a set of consumers without work
leaving the team boundary. As soon
as work leaves your team, your
lead time is beholden to others, and
that’s not where you want to be.

Nicolai: Well, services and teams are
only a part of the whole distributed
process. Somebody has to be respon-
sible for things as a whole.

Challenges and Outlook
Olaf: Which critical success factors for
or inhibitors to a broad, sustainable
adoption of microservices do you see?

James: I have a few. The ability to
continuously deliver software into
production. The ability to easily
create infrastructure on demand.
The third would be organizational,
which we already talked about.

Mike: A theme we explored in Mi-

croservice Architecture23 is that
the only constant is change. Any-
one who thinks that creating a suc-
cessful IT system means reaching
some fi xed point on a path is mak-
ing a mistake. Almost always, by the
time you reach your intended goal,
things have changed. In fact, I con-
tend the biggest contributor to what
is sometimes called technical debt is
that systems (both code and orga-
nizations) fail to properly deal with
change over time.

One of the things I like about
the microservice approach is that
small teams working on small com-
ponents can complete a round of
changes in days, not months. That
means you get feedback sooner. To
me, sustainable change means doing

it in small increments over a long
period of time. And doing it in ways
that will not break a running pro-
duction system.

Nicolai: I absolutely agree. To amend,
the key is to understand the nature
of distributed systems, especially
the inherent problems. This also in-
cludes understanding the difference
between evolving distributed sys-
tems like the Internet and managed
distributed systems as with enter-
prise SOA strategies. This will hope-
fully help to avoid the impression
that microservices solve fundamen-
tal problems of distribution without
a price.

Cesare: What R&D challenges should
our readers work on?

Mike: From my perspective, we need
much more work on tooling and de-
sign at the system level. While there
are dozens of code libraries, IDEs,
and frameworks available at the
component level, I don’t see many
valuable tools at the system level.
Currently, a running system is still
incredibly opaque to humans. This
is especially true for systems that
span multiple physical locations and
are operated by independent teams
around the world.

I like the trend of so-called server-
less computing24—where all the in-
frastructure of deploying and scaling
a service is hidden from developers.
But the current crop of these tools is
still amazingly crude.

Nicolai: The biggest challenge may be
to understand that big systems fol-
low different rules than small sys-
tems. Unfortunately, we learn pro-
gramming mostly in small systems.
But programming is in essence to-
day the maintenance and evolution
of system landscapes. And there,
different rules apply. For example,
in a small system, you try to avoid
redundancy, can deal with transac-
tions, and are able to defi ne a com-
mon data model. In large systems,
you need redundancy and have to
use compensation instead of trans-
actions, and any attempt to have a
common data model is a recipe for
failure. Unfortunately, the experi-
ence with large systems is hard to
teach; we can and have to do better.

James: I think there are a number
of challenges. One very interesting
area for me is the testing of distrib-
uted systems using tools like Jep-
sen [aphyr.com/tags/jepsen]. I really

Evolving self-adjusting systems like
the Internet is different from evolving
managed enterprise SOAs.

INSIGHTS

MARCH/APRIL 2017 | IEEE SOFTWARE 103

like the way the tool includes the
clients of the system when perturb-
ing it. Also, I’d like to see if it was
possible to identify invariants for
microservices automagically, based
on data such as request logs. One of
the real issues teams struggle with
is identifying thresholds for alerts
to let them know that something is
wrong. Machine learning applied in
this space would be super-useful. I
also like what Adrian Cockcroft is
trying to do with his network simu-
lator. Harvesting real data to pro-
duce visualizations like those in his
Spigo [github.com/adrianco/spigo]
tool would be fun.

Finally, I’m sure there is a load of
work to be done looking at business
and software architecture isomor-
phism and how that relates to spe-
cifi cs of fl at versus hierarchical team

structures. For instance, what’s the
effect of matrix management on the
fl ow of work and resulting designs?

Mike: I also would like to see more
work on improving the autonomy of
running systems. The DevOps move-
ment did a great job of automating
things from the time code is checked
in to the time it is deployed into pro-
duction. But we have just scratched
the surface of automating the way
running components advertise their
capabilities, enlist other compo-
nents, and actually complete actions
on the network.

Finally, I think there is still much
work to be done to help system de-
signers. The process of identifying
and defi ning application domains
is inadequate, in my view. We need
more work on how to outline and

modify context boundaries over time,
and more work on how to know when
it is time to change these boundar-
ies in order to improve the speed and
safety of a running system.

So, I think there are a lot of great
opportunities to improve the quality
of distributed network applications.
I think we’re still in the earliest
stages of architecture for software
and networks. And I’m looking for-
ward to what’s ahead.

Cesare and Olaf: Thank you for your
invaluable insights and your time to
have this inspiring discussion, Mike,
James, and Nicolai!

References
1. C. Pautasso et al., “Microservices in

Practice, Part 1: Reality Check and
Service Design,” IEEE Software, vol.

Recognizing Excellence in High-Performance Computing

Nominations are Solicited for the

SEYMOUR CRAY, SIDNEY FERNBACH & KEN KENNEDY AWARDS

Deadline: 1 July 2017
All nomination details available at

awards.computer.org

SEYMOUR CRAY COMPUTER ENGINEERING AWARD
Established in late 1997 in memory of Seymour Cray, the Seymour Cray Award is awarded to recog-
nize innovative contributions to high-performance computing systems that best exemplify the creative
spirit demonstrated by Seymour Cray. The award consists of a crystal memento and honorarium of
US$10,000. This award requires 3 endorsements.

ACM/IEEE-CS KEN KENNEDY AWARD
This award was established in memory of Ken Kennedy, the founder of Rice University’s nationally
ranked computer science program and one of the world’s foremost experts on high- performance
FRPSXWLQJ��$�FHUWLƮFDWH�DQG�86�������KRQRUDULXP�DUH�DZDUGHG�MRLQWO\�E\�WKH�$&0�DQG�WKH�
IEEE Computer Society for outstanding contributions to programmability or productivity in high-
SHUIRUPDQFH�FRPSXWLQJ�WRJHWKHU�ZLWK�VLJQLƮFDQW�FRPPXQLW\�VHUYLFH�RU�PHQWRULQJ�FRQWULEXWLRQV��7KLV�
award requires 2 endorsements.

SIDNEY FERNBACH MEMORIAL AWARD
Established in 1992 by the Board of Governors of the IEEE Computer Society, this award honors the
memory of the late Dr. Sidney Fernbach, one of the pioneers on the development and application of
high- performance computers for the solution of large computational problems. The award, which con-
VLVWV�RI�D�FHUWLƮFDWH�DQG�D�86�������KRQRUDULXP��LV�SUHVHQWHG�DQQXDOO\�WR�DQ�LQGLYLGXDO�IRU�ŠDQ�RXW-
standing contribution in the application of high-performance computers using innovative approach-
es.” This award requires 3 endorsements.

INSIGHTS

104 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

34, no. 1, 2017, pp. 91–98.
2. M.L. Abbott and M.T. Fisher, The

Art of Scalability: Scalable Web Ar-
chitecture, Processes, and Organiza-
tions for the Modern Enterprise, 2nd
ed., Addison-Wesley, 2015.

3. ESI Language Specification 1.0, W3C
note, 4 Aug. 2001; www.w3.org/TR
/esi-lang.

4. S. Newman, “Pattern: Backends for
Frontends,” 18 Nov. 2015; sam
newman.io/patterns/architectural/bff.

5. E. Evans, Domain-Driven Design:
Tackling Complexity in the Heart of
Software, Addison-Wesley, 2003.

6. P. Bailis and A. Ghodsi, “Eventual
Consistency Today: Limitations, Ex-
tensions, and Beyond,” Comm. ACM,
vol. 56, no. 5, 2013, pp. 55–63.

7. A. Kay, “Clarification of ‘Object-
Oriented,’” Dr. Alan Kay on the
Meaning of “Object-Oriented Pro-
gramming,” 23 July 2003; www.purl
.org/stefan_ram/pub/doc_kay_oop_en.

8. N. Josuttis, SOA in Practice: The
Art of Distributed System Design,
O’Reilly, 2007.

9. M. Fowler and J. Webber, “Does My
Bus Look Big in This?,” presentation
at QCon London 2008, 6 June 2008;
www.infoq.com/presentations/soa
-without-esb.

10. “Overambitious API Gateways,”

Thoughtworks, 2016; www.thought
works.com/radar/platforms/over
ambitious-api-gateways.

11. The Constrained Application Proto-
col (CoAP), IETF RFC 7252, June
2014; tools.ietf.org/html/rfc7252.

12. Licklider Transmission Protocol—
Specification, IETF RFC 5326, Sept.
2008; tools.ietf.org/html/rfc5326.

13. C. Stross, Accelerando, Ace Books,
2005.

14. M. Fowler, “Tolerant Reader,” 9 May
2011; martinfowler.com/bliki
/TolerantReader.html.

15. I. Robinson, “Consumer-Driven Con-
tracts: A Service Evolution Pattern,”
12 June 2006; martinfowler.com
/articles/consumerDrivenContracts.html.

16. M. Conway, “How Do Committees
Invent?,” Datamation, Apr. 1968;
www.melconway.com/research
/committees.html.

17. F. Brooks, The Mythical Man-
Month: Essays on Software Engi-
neering, 2nd ed., Addison-Wesley
Professional, 1995.

18. J. Gall, Systemantics: How Systems
Work and Especially How They Fail,
Quadrangle, 1977.

19. J. Roberts, The Modern Firm: Orga-
nizational Design for Performance
and Growth, Oxford Univ. Press,
2007.

20. D.G. Reinertsen, The Principles of
Product Development Flow: Second
Generation Lean Product Develop-
ment, Celeritas, 2009.

21. T.J. Allen, Managing the Flow of
Technology: Technology Transfer
and the Dissemination of Techno-
logical Information within the R&D
Organization, MIT Press, 1984.

22. R.I.M. Dunbar, “Neocortex Size as
a Constraint on Group Size in Pri-
mates,” J. Human Evolution, vol. 22,
no. 6, 1992, pp. 469–493.

23. I. Nadareishvili et al., Microservice
Architecture: Aligning Principles,
Practices, and Culture, O’Reilly, 2016.

24. M. Roberts, “Serverless Architec-
tures,” 4. Aug. 2016; martinfowler
.com/articles/serverless.html.

CESARE PAUTASSO is an associate professor
at the University of Lugano’s Faculty of Informat-
ics. Contact him at c.pautasso@ieee.org.

OLAF ZIMMERMANN is a professor and insti-
tute partner at the University of Applied Sciences
of Eastern Switzerland, Rapperswil. Contact him
at ozimmerm@hsr.ch.

MIKE AMUNDSEN is the director of API
architecture at the API Academy. Contact him at
mca@mamund.com.

JAMES LEWIS is a principal consultant at
ThoughtWorks. Contact him at jalewis@
thoughtworks.com.

NICOLAI JOSUTTIS is an independent consul-
tant. Contact him at nico@josuttis.com.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

